g03 — Multivariate Methods g03bac

nag_mv_orthomax (g03bac)

1. Purpose

nag_mv_orthomax (g03bac) computes orthogonal rotations for a matrix of loadings using a
generalized orthomax criterion.

2. Specification

#include <nag.h>
#include <nagg03.h>

void nag_mv_orthomax(Nag_RotationLoading stand, double g, Integer nvar,
Integer k, double f1[], Integer tdf, double flr[], double r[],
Integer tdr, double acc, Integer maxit, Integer *iter, NagError *fail)

3. Description

Let A be the p by k matrix of loadings from a variable-directed multivariate method, e.g., canonical
variate analysis or factor analysis. This matrix represents the relationship between the original
p variables and the k orthogonal linear combinations of these variables, the canonical variates or
factors. The latter are only unique up to a rotation in the k-dimensional space they define. A
rotation can then be found that simplifies the structure of the matrix of loadings, and hence the
relationship between the original and the derived variables. That is, the elements, Aj;, of the
rotated matrix, A*, are either relatively large or small. The rotations may be found by minimizing
the criterion:
P ~y k
V:Z a (A:j)4 - E;

j=11i=1

» 2
* \2
>00]
i=1
where the constant v gives a family of rotations with v = 1 giving varimax rotations and v = 0
giving quartimax rotations.

It is generally advised that factor loadings should be standardised, so that the sum of squared
elements for each row is one, before computing the rotations.

The matrix of rotations, R, such that A* = AR, is computed using first an algorithm based on
that described by Cooley and Lohnes (1971), which involves the pairwise rotation of the factors.
Then a final refinement is made using a method similar to that described by Lawley and Maxwell
(1971), but instead of the eigenvalue decomposition, the algorithm has been adapted to incorporate
a singular value decomposition.

4. Parameters

stand
Input: indicates if the matrix of loadings is to be row standardised before rotation.
If stand = Nag_RoLoadStand the loadings are row standardised.
If stand = Nag_RoLoadNotStand the loadings are left unstandardised.
Constraint: stand = Nag_RoLoadStand or Nag_RoLoadNotStand.
g
Input: the criterion constant, v, with v = 1.0 giving varimax rotations and v = 0.0 giving
quartimax rotations.
Constraint: g > 0.0.
nvar
Input: The number of original variables, p.
Constraint: nvar > k.
k

Input: The number of derived variates or factors, k.
Constraint: k > 2.

[NP3275/5/pdf] 3.g03bac. 1

nag_mv_orthomax NAG C Library Manual

fi[nvar|[tdf]

Input: the matrix of loadings, A. fl[i — 1][j — 1] must contain the loading for the ith variable
on the jth factor, fori =1,2,...,p; j=1,2,...,k.

Output: if stand = Nag_RoLoadStand the elements of fl are standardised so that the sum
of squared elements for each row is 1.0 and then after, the computation of the rotations are
rescaled; this may lead to slight differences between the input and output values of fl. If stand
= Nag_RoLoadNotStand, fl will be unchanged on exit.

tdf
Input: the last dimension of the arrays fl and fir as declared in the calling program.
Constraint: tdf > k.

fir[nvar|[tdf]
Output: the rotated matrix of loadings, A*. flr[i — 1][j — 1] will contain the rotated loading
for the ith variable on the jth factor, for i =1,2,...,p; 7 =1,2,...,k.

r[k][tdr]
Output: the matrix of rotations, R.

tdr
Input: the last dimension of the array r as declared in the calling program.
Constraint: tdr > k.

acc
Input: indicates the accuracy required. The iterative procedure of Cooley and Lohnes (1971)
will be stopped and the final refinement computed when the change in V is less than acc x
max(1.0,V). If acc is greater than or equal to 0.0 but less than machine precision, or if acc
is greater than 1.0, then machine precision will be used instead.
It is suggested that acc be set to 0.00001.
Constraint: acc > 0.0.

maxit
Input: the maximum number of iterations. It is suggested that maxit be set to 30.
Constraint: maxit > 1.

iter
Output: the number of iterations performed.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_BAD PARAM

On entry, parameter stand had an illegal value.

NE_INT_ARG._LT

On entry, k must not be less than 2: k = (value).

NE_INT_ARG_LE

On entry, maxit must not be less than or equal to 0 : maxit = (value).

NE_REAL_ARG_LT

On entry, g must not be less than 0.0: g = (value).
On entry, acc must not be less than 0.0: acc = (value).

NE_2 INT_ARG_LT

3.g03bac.2

On entry, nvar = (value) while k = (value).
These parameters must satisfy nvar > k.
On entry, tdf = (value) while k = (value).
These parameters must satisfy tdf > k.

On entry, tdr = (value) while k = (value).
These parameters must satisfy tdr > k.

[NP3275/5/pdf]

g03 — Multivariate Methods g03bac

6.1.

6.2.

8.1.

NE_SVD_NOT_CONV
The singular value decomposition has failed to converge.
This is an unlikely error exit.

NE_ACC.ITER
The algorithm to find R has failed to reach the required accuracy in the given number of
iterations, (value). Try increasing acc or increasing maxit. The returned solution should be
a reasonable approximation.

NE_ALLOC_FAIL
Memory allocation failed.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

Further Comments

If the results of a principal component analysis as carried out by nag-mv_prin_comp (g03aac) are to
be rotated, the loadings as returned in the array p by nag_mv_prin_comp (g03aac) can be supplied
via the parameter fl to nag_mv_orthomax. The resulting rotation matrix can then be used to rotate
the principal component scores as returned in the array v by nag-mv_prin_comp (g03aac). The
routine dgemm (f06yac) may be used for this matrix multiplication.

Accuracy

The accuracy is determined by the value of acc.

References

Cooley W C and Lohnes P R (1971) Multivariate Data Analysis Wiley.
Lawley D N and Maxwell A E (1971) Factor Analysis as a Statistical Method Butterworths (2nd
Edition).

See Also

nag-mv_prin_comp (g03aac)
dgemm (f06yac)

Example

The example is taken from page 75 of Lawley and Maxwell (1971). The results from a factor
analysis of ten variables using three factors are input and rotated using varimax rotations without
standardising rows.

Program Text

/* nag_mv_orthomax (gO3bac) Example Program.
Copyright 1998 Numerical Algorithms Group.

Mark 5, 1998.

* X ¥ X ¥

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>

#define NMAX 10
#define MMAX 3

main()
{
double g;

[NP3275/5/pdf] 3.g03bac.3

nag_mv_orthomax

8.2.

double r[MMAX] [MMAX];
double f1[NMAX] [MMAX],acc, flr[NMAX] [MMAX];

Integer iter, nvar;
Integer i, j, k;
Integer maxit;
Integer tdf
Integer tdr

MMAX ;
MMAX;

char char_stand[2];
Nag_RotationLoading stand;
Vprintf ("gO3bac Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("%*["\nl");

Vscanf ("%14",&nvar) ;
Vscanf ("%1d",&k) ;

Vscanf ("%41f",&g) ;

Vscanf ("%s",char_stand) ;
Vscanf ("%1f",&acc);
Vscanf ("%1d",&maxit) ;

if (*char_stand == ’S’)
stand = Nag_RoLoadStand;
else

stand = Nag_RoLoadNotStand;
if (nvar <= NMAX && k <= MMAX)
{
for (i = 0; i < nvar; ++i)
{
for (j = 0; j < k; ++j)
Vscanf ("%1f",&f1[i]1[j1);
}

NAG C Library Manual

gO3bac(stand, g, nvar, k, (double *)fl, tdf, (double *)flr, (double *)r,

tdr, acc, maxit, &iter, NAGERR_DEFAULT);

Vprintf ("\n Rotated factor loadings\n\n");

for (i = 0; i < nvar; ++i)
{
for (j = 0; j < k; ++j)
Vprintf (" %8.3f",flr[i]l[j1);
Vprintf ("\n");

Vprintf ("\n Rotation matrix\n\n");
for (i = 0; i < k; ++1i)
{

for (j = 0; j < k; ++j)
Vprintf (" %8.3f",r[i][j1);
Vprintf ("\n");

exit (EXIT_SUCCESS);

Vprintf ("Incorrect input value of nvar or k.\n");

exit (EXIT_FAILURE);
}
b

Program Data

g03bac Example Program Data
10 3 1.0 U 0.00001 20
0.788 -0.152 -0.352
0.874 0.381 0.041
0.814 -0.043 -0.213
0.798 -0.170 -0.204
0.641 0.070 -0.042

3.g03bac.4

[NP3275/5/pdf]

903 — Multivariate Methods

0.755 -0.298
0.782 -0.221
0.767 -0.091
0.733 -0.384
0.771 -0.101

0.067
0.028
0.358
0.229
0.071

8.3. Program Results

g03bac Example Program Results

Rotated factor loadings

.329
.849
.450
.345
.453
.263
.332
472
.209
.423

[eNoNoNoNoNoNoNoRoN)

Rotation

0.633
0.758
0.155

-0.289
-0.273
-0.327
-0.397
-0.276
-0.615
-0.561
-0.684
-0.754
-0.514

matrix
-0.534

0.573
-0.622

.759
.340
.633
.657
.370
.464
.485
.183
.354
.409

.560
.311
.768

g03bac

[NP3275/5/pdf]

3.g03bac.5

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

